Wireless Broadband Technology

Report Cover Image

Last updated: 19 Jan 2009 Update History

Report Status: Archived

Report Pages: 116

Analyst: Stephen McNamara

Publication Overview

This report details the key technical principles behind each technology and contains critical examinations of competing technologies. This includes an assessment of the long-term prospects for WiMAX and its future variants, such as 802.16m versus LTE (the 4G replacement for UMTS) and its IMT-Advanced variant, LTE Advanced. We consider the prospects for these technologies for both traditional handset-like, voice-oriented, devices and for larger mobile devices.  

Some familiarity with basic telecommunications and radio terminology is assumed, but the report is written for non-engineers, or engineers from other fields, who wish to develop a comprehensive overview of Wireless Broadband and related technologies. 

We intend that by developing sufficient understanding of radio frequency propagation and of the principles of each technology, readers will be able to understand the key challenges and benefits of each applicable technology in the setting they are considering. The report provides a solid, independent overview of the field, and constitutes a solid basis for further consultation and consideration of the systems provided by particular vendors. 

 

Key sections:

·         Historical background;

·         Principles of operation;

·         Radio spectrum and propagation;

·         Technical standards;

·         Critical analysis of strengths and weaknesses;

·         Competition with other technologies;

·         Opportunities for new services;

·         Combining technologies;

·         Industry consortia, standards bodies, regulators and key vendors;

·         Explaining established and emerging technologies in detail.

 

 

Researcher:- Robin Whittle (3rd edition)

Executive Summary

Wireless Broadband traditionally refers to ‘last-mile’ delivery of high speed data, typically for Internet access and private networking, in metropolitan and rural areas, over distances of hundreds of metres to several kilometres. WiMAX in particular has long been promoted as a viable alternative to DSL, including for triple play voice, video and data services. We critically examine the capabilities of this emerging technology in the context of limited spectrum availability in the frequencies best suited for longer distance propagation.

 

Another technology with great appeal for delivering broadband services without a cabled infrastructure is the use of Mesh Networking, with WiFi or WiMAX. One aspect of the Digital Dividend resulting from the digitisation of broadcast television is the decision by OfCom and the FCC to allow the utilisation of ‘White Space’– locally unused UHF TV channels for Wireless Regional Area Networks (WRANs). This will only be possible with a new generation of Cognitive Radio equipment, such as that being developed by IEEE Task Group 802.22. These WRANs may make use of Mesh Networking, and show considerable promise for providing broadband connectivity in rural and remote areas.

 

Mesh networking involves dozens or hundreds of nodes, sharing traffic between themselves, dynamically configuring themselves according to traffic patterns, propagation and interference limitations, to form a self-managing backbone network which can be spread, in principle, over large urban and perhaps rural areas. We report on the status of technical standards in this field and discuss the challenges which will need to be overcome in order to deploy robust, standards-based mesh networks.

 

While Bluetooth is neither long-distance nor broadband, it is a successful Personal Area Networking technology with several important implications. Firstly, it uses the same frequencies as most WiFi systems, requiring very careful coordination of frequencies and transmit/receive timing with any device, such as a laptop, which is both WiFi and Bluetooth compatible. Secondly, future broadband Bluetooth standards will enable the use the WiMedia UWB radio technology, greatly increasing its data rate and potentially improving its robustness.

 

WiMedia UWB is an advanced and promising technology now entering commercial production. Initially based on pulse techniques which covered vast ranges of frequencies, including those used for licensed services, UWB has emerged with a sophisticated OFDM radio specification which enables it, in principle, to avoid interference from and to other services, including WiMAX. We consider UWB’s promise as in in-building data- and video-centric networking system. We examine challenges such as the potential difficulties of implementing both WiMAX and UWB in the same device, or operating two such devices in close proximity.

 

Beyond UMB, an even more adventurous short-distance radio technology involves 5mm waves at 60GHz, with data rates measured in several gigabits per second, even from battery operated devices. We report on the four approaches to this technology: ECMA TC48, WirelessHD, IEEE 802.15.3c and 802.11 (VHT60).

 

We also report on current developments in Radio Frequency Identification, Near Field communications and WPANs, including Bluetooth, Bluetooth Low Energy (WiBree), 802.15.4 ZigBee, 6LowPAN, Z-Wave, ANT and En-Ocean.

 

Some of these technologies are being woven together to greatly enhance the communication capabilities of consumer devices. For instance, NFC is a sophisticated, highly secure, and very easy to use method of pairing Bluetooth devices in order that they can be used together. Bluetooth and its forthcoming Bluetooth Low Energy variant are suitable for a wide variety of applications – and Bluetooth is to be enhanced with WiMedia UWB for transferring gigabytes of data rapidly and with comparatively low power consumption.

 

The range of technologies discussed in this report spans very low data rate RFID to WiMAX, WiFi, UMB and 60GHz systems with bandwidths up to four gigabits per second. There are areas of overlap between the functionality of many of these technologies – and some conflicts between them due to their use of the same radio frequency spectrum without interoperability or thorough techniques of sharing the resource properly.

Related Reports

Share this Report

TMT Intelligence

A platform to scale your intelligence tasks

Monitor critical insights with our AI-powered Market Intelligence Platform gathering and analyzing intelligence in real time. With AI trained to spot emerging trends and detect new strategic opportunities, our clients use TMT Intelligence to accelerate their growth.

If you want to know more about it, please see:

TMT Intelligence Platform

Research Methodology

BuddeComm's strategic business reports contain a combination of both primary and secondary research statistics, analyses written by our senior analysts supported by a network of experts, industry contacts and researchers from around the world as well as our own scenario forecasts.

For more details, please see:

Research Methodology

More than 4,000 customers from 140 countries utilise BuddeComm Research

Are you interested in BuddeComm's Custom Research Service?

News & Views

Have the latest telecommunications industry news delivered to your inbox by subscribing to BuddeComm's weekly newsletter.

Unsubscribe